monado/src/xrt/drivers/psvr/psvr_device.c

760 lines
16 KiB
C
Raw Normal View History

// Copyright 2016, Joey Ferwerda.
// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief PSVR device implementation, imported from OpenHMD.
* @author Joey Ferwerda <joeyferweda@gmail.com>
* @author Philipp Zabel <philipp.zabel@gmail.com>
* @author Jakob Bornecrantz <jakob@collabora.com>
* @ingroup drv_psvr
*/
#include "xrt/xrt_compiler.h"
#include "util/u_misc.h"
#include "util/u_time.h"
#include "util/u_debug.h"
#include "util/u_device.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "psvr_device.h"
/*
*
* Structs and defines.
*
*/
DEBUG_GET_ONCE_BOOL_OPTION(psvr_disco, "PSVR_DISCO", false)
#define FEATURE_BUFFER_SIZE 256
/*!
* Private struct for the @ref drv_psvr device.
*
* @ingroup drv_psvr
*/
struct psvr_device
{
struct xrt_device base;
hid_device *hmd_handle;
hid_device *hmd_control;
struct psvr_sensor_packet sensor;
struct
{
struct xrt_vec3 gyro;
struct xrt_vec3 accel;
} raw;
uint16_t buttons;
bool powered_on;
bool in_vr_mode;
bool print_spew;
bool print_debug;
};
// Alternative way to turn on all of the leds.
XRT_MAYBE_UNUSED static const unsigned char psvr_tracking_on[12] = {
0x11, 0x00, 0xaa, 0x08, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
};
2019-08-16 15:01:02 +00:00
#define PSVR_LED_POWER_OFF ((uint8_t)0)
#define PSVR_LED_POWER_MAX ((uint8_t)100)
enum psvr_leds
{
PSVR_LED_A = (1 << 0),
PSVR_LED_B = (1 << 1),
PSVR_LED_C = (1 << 2),
PSVR_LED_D = (1 << 3),
PSVR_LED_E = (1 << 4),
PSVR_LED_F = (1 << 5),
PSVR_LED_G = (1 << 6),
PSVR_LED_H = (1 << 7),
PSVR_LED_I = (1 << 8),
PSVR_LED_FRONT = PSVR_LED_A | PSVR_LED_B | PSVR_LED_C | PSVR_LED_D |
PSVR_LED_E | PSVR_LED_F | PSVR_LED_G,
PSVR_LED_BACK = PSVR_LED_H | PSVR_LED_I,
PSVR_LED_ALL = PSVR_LED_FRONT | PSVR_LED_BACK,
};
/*
*
* Helpers and internal functions.
*
*/
static inline struct psvr_device *
psvr_device(struct xrt_device *p)
{
return (struct psvr_device *)p;
}
static int
open_hid(struct psvr_device *p,
struct hid_device_info *dev_info,
hid_device **out_dev)
{
hid_device *dev = NULL;
int ret;
dev = hid_open_path(dev_info->path);
if (dev == NULL) {
PSVR_ERROR(p, "Failed to open '%s'", dev_info->path);
return -1;
}
ret = hid_set_nonblocking(dev, 1);
if (ret != 0) {
PSVR_ERROR(p, "Failed to set non-blocking on device");
hid_close(dev);
return -1;
}
*out_dev = dev;
return 0;
}
static int
send_to_control(struct psvr_device *psvr, const uint8_t *data, size_t size)
{
return hid_write(psvr->hmd_control, data, size);
}
/*
*
* Packet reading code.
*
*/
static void
accel_from_psvr_vec(const int16_t smp[3], struct xrt_vec3 *out_vec)
{
2019-06-18 16:17:37 +00:00
//! @todo Figure out calibration data and use here.
// clang-format off
out_vec->x = (float)(smp[1] * (9.81 / 16384.0));
out_vec->y = (float)(smp[0] * (9.81 / 16384.0));
out_vec->z = (float)(smp[2] * -(9.81 / 16384.0));
// clang-format on
}
static void
gyro_from_psvr_vec(const int16_t smp[3], struct xrt_vec3 *out_vec)
{
2019-06-18 16:17:37 +00:00
//! @todo Figure out calibration data and use here.
out_vec->x = (float)(smp[1] * 0.00105);
out_vec->y = (float)(smp[0] * 0.00105);
out_vec->z = (float)(smp[2] * 0.00105 * -1.0);
}
static void
update_fusion(struct psvr_device *psvr,
struct psvr_sensor_sample *sample,
uint32_t tick_delta)
{
struct xrt_vec3 mag = {0.0f, 0.0f, 0.0f};
float dt = tick_delta * PSVR_TICK_PERIOD;
(void)mag;
(void)dt;
accel_from_psvr_vec(sample->accel, &psvr->raw.accel);
gyro_from_psvr_vec(sample->gyro, &psvr->raw.gyro);
//! @todo This is where we do the sensor fusion.
// ofusion_update(&psvr->sensor_fusion, dt, &psvr->raw.gyro,
// &psvr->raw.accel, &mag);
}
static uint32_t
calc_delta_and_handle_rollover(uint32_t next, uint32_t last)
{
uint32_t tick_delta = next - last;
// The 24-bit tick counter has rolled over,
// adjust the "negative" value to be positive.
if (tick_delta > 0xffffff) {
tick_delta += 0x1000000;
}
return tick_delta;
}
static void
handle_tracker_sensor_msg(struct psvr_device *psvr,
unsigned char *buffer,
int size)
{
uint32_t last_sample_tick = psvr->sensor.samples[1].tick;
if (!psvr_parse_sensor_packet(&psvr->sensor, buffer, size)) {
PSVR_ERROR(psvr, "couldn't decode tracker sensor message");
}
struct psvr_sensor_packet *s = &psvr->sensor;
// Simplest is the buttons.
psvr->buttons = s->buttons;
uint32_t tick_delta = 500;
// Startup correction, ignore last_sample_tick if zero.
if (last_sample_tick > 0) {
tick_delta = calc_delta_and_handle_rollover(s->samples[0].tick,
last_sample_tick);
// The PSVR device can buffer sensor data from previous
// sessions which we can get at the start of new sessions.
// @todo Maybe just skip the first 10 sensor packets?
// @todo Maybe reset sensor fusion?
if (tick_delta < 400 || tick_delta > 600) {
PSVR_DEBUG(psvr, "tick_delta = %u", tick_delta);
tick_delta = 500;
}
}
// Update the fusion with first sample.
update_fusion(psvr, &s->samples[0], tick_delta);
// New delta between the two samples.
tick_delta = calc_delta_and_handle_rollover(s->samples[1].tick,
s->samples[0].tick);
// Update the fusion with second sample.
update_fusion(psvr, &s->samples[1], tick_delta);
}
static void
handle_control_status_msg(struct psvr_device *psvr,
unsigned char *buffer,
int size)
{
struct psvr_status_packet packet;
if (!psvr_parse_status_packet(&packet, buffer, size)) {
PSVR_ERROR(psvr, "couldn't decode tracker sensor message");
}
/*
* Power
*/
if (packet.status & PSVR_STATUS_BIT_POWER) {
if (!psvr->powered_on) {
PSVR_DEBUG(psvr, "Device powered on! '%02x'",
packet.status);
}
psvr->powered_on = true;
} else {
if (psvr->powered_on) {
PSVR_DEBUG(psvr, "Device powered off! '%02x'",
packet.status);
}
psvr->powered_on = false;
}
/*
* VR-Mode
*/
if (packet.vr_mode == PSVR_STATUS_VR_MODE_OFF) {
if (psvr->in_vr_mode) {
PSVR_DEBUG(psvr, "Device not in vr-mode! '%02x'",
packet.vr_mode);
}
psvr->in_vr_mode = false;
} else if (packet.vr_mode == PSVR_STATUS_VR_MODE_ON) {
if (!psvr->in_vr_mode) {
PSVR_DEBUG(psvr, "Device in vr-mode! '%02x'",
packet.vr_mode);
}
psvr->in_vr_mode = true;
} else {
PSVR_ERROR(psvr, "Unknown vr_mode status!");
}
}
static void
handle_control_0xA0(struct psvr_device *psvr, unsigned char *buffer, int size)
{
if (size < 4) {
return;
}
PSVR_DEBUG(psvr, "%02x %02x %02x %02x", buffer[0], buffer[1], buffer[2],
buffer[3]);
}
static int
read_handle_packets(struct psvr_device *psvr)
{
uint8_t buffer[FEATURE_BUFFER_SIZE];
int size = 0;
do {
size = hid_read(psvr->hmd_handle, buffer, FEATURE_BUFFER_SIZE);
if (size == 0) {
return 0;
}
if (size < 0) {
return -1;
}
handle_tracker_sensor_msg(psvr, buffer, size);
} while (true);
}
static int
read_control_packets(struct psvr_device *psvr)
{
uint8_t buffer[FEATURE_BUFFER_SIZE];
int size = 0;
do {
size = hid_read(psvr->hmd_control, buffer, FEATURE_BUFFER_SIZE);
if (size == 0) {
return 0;
}
if (size < 0) {
return -1;
}
if (buffer[0] == PSVR_PKG_STATUS) {
handle_control_status_msg(psvr, buffer, size);
} else if (buffer[0] == PSVR_PKG_0xA0) {
handle_control_0xA0(psvr, buffer, size);
} else {
PSVR_DEBUG(psvr, "Got report, 0x%02x", buffer[0]);
}
} while (true);
}
/*
*
* Control sending functions.
*
*/
static int
wait_for_power(struct psvr_device *psvr, bool on)
{
for (int i = 0; i < 5000; i++) {
read_handle_packets(psvr);
read_control_packets(psvr);
if (psvr->powered_on == on) {
return 0;
}
usleep(1000);
}
return -1;
}
static int
wait_for_vr_mode(struct psvr_device *psvr, bool on)
{
for (int i = 0; i < 5000; i++) {
read_handle_packets(psvr);
read_control_packets(psvr);
if (psvr->in_vr_mode == on) {
return 0;
}
usleep(1000);
}
return -1;
}
static int
control_power_and_wait(struct psvr_device *psvr, bool on)
{
const char *status = on ? "on" : "off";
const uint8_t data[8] = {
0x17, 0x00, 0xaa, 0x04, on, 0x00, 0x00, 0x00,
};
int ret = send_to_control(psvr, data, sizeof(data));
if (ret < 0) {
PSVR_ERROR(psvr, "Failed to switch %s the headset! '%i'",
status, ret);
}
ret = wait_for_power(psvr, on);
if (ret < 0) {
PSVR_ERROR(psvr, "Failed to wait for headset power %s! '%i'",
status, ret);
return ret;
}
return ret;
}
static int
control_vrmode_and_wait(struct psvr_device *psvr, bool on)
{
const uint8_t data[8] = {
0x23, 0x00, 0xaa, 0x04, on, 0x00, 0x00, 0x00,
};
int ret;
ret = send_to_control(psvr, data, sizeof(data));
if (ret < 0) {
PSVR_ERROR(psvr, "Failed %s vr-mode the headset! '%i'",
on ? "enable" : "disable", ret);
return ret;
}
ret = wait_for_vr_mode(psvr, on);
if (ret < 0) {
PSVR_ERROR(psvr, "Failed to wait for vr mode! '%i'", ret);
return ret;
}
return 0;
}
/*!
* Control the leds on the headset, allowing you to turn on and off different
* leds with a single call.
*
* @param[in] psvr The PSVR to control leds on.
* @param[in] adjust The leds to adjust with @p power.
* @param[in] power The power level to give to @p adjust leds.
* @param[in] off Leds that should be turned off,
* @p adjust has higher priority.
* @ingroup drv_psvr
*/
static int
control_leds(struct psvr_device *psvr,
enum psvr_leds adjust,
uint8_t power,
enum psvr_leds off)
{
// Get the leds we should control and remove any extra bits.
enum psvr_leds all = (enum psvr_leds)((adjust | off) & PSVR_LED_ALL);
if (all == 0) {
// Nothing todo.
return 0;
}
// Just in case, if the value is larger
// then max it will turn the leds off.
if (power > PSVR_LED_POWER_MAX) {
power = PSVR_LED_POWER_MAX;
}
uint8_t data[20] = {
0x15,
0x00,
0xaa,
0x10,
2019-08-16 15:01:02 +00:00
(uint8_t)all, // lower byte
(uint8_t)(all >> 8), // upper byte
adjust & PSVR_LED_A ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_B ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_C ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_D ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_E ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_F ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_G ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_H ? power : PSVR_LED_POWER_OFF,
adjust & PSVR_LED_I ? power : PSVR_LED_POWER_OFF,
0,
0,
0,
0,
0,
};
return send_to_control(psvr, data, sizeof(data));
}
static int
disco_leds(struct psvr_device *psvr)
{
static const uint16_t leds[] = {
// First loop
PSVR_LED_A,
PSVR_LED_E,
PSVR_LED_B,
PSVR_LED_G,
PSVR_LED_D,
PSVR_LED_C,
PSVR_LED_F,
// Second loop
PSVR_LED_A,
PSVR_LED_E,
PSVR_LED_B,
PSVR_LED_G,
PSVR_LED_D,
PSVR_LED_C,
PSVR_LED_F,
// Blink loop
PSVR_LED_BACK,
PSVR_LED_FRONT,
PSVR_LED_BACK,
PSVR_LED_FRONT,
// All on after loop
PSVR_LED_ALL,
};
for (size_t i = 0; i < ARRAY_SIZE(leds); i++) {
int ret = control_leds(psvr, (enum psvr_leds)leds[i],
PSVR_LED_POWER_MAX, PSVR_LED_ALL);
if (ret < 0) {
return ret;
}
// Sleep for a tenth of a second while polling for packages.
for (int k = 0; k < 100; k++) {
ret = read_handle_packets(psvr);
if (ret < 0) {
return ret;
}
ret = read_control_packets(psvr);
if (ret < 0) {
return ret;
}
usleep(1000);
}
}
return 0;
}
static void
teardown(struct psvr_device *psvr)
{
if (psvr->hmd_control != NULL) {
// Turn off VR-mode and power down headset.
if (control_vrmode_and_wait(psvr, false) < 0 ||
control_power_and_wait(psvr, false) < 0) {
PSVR_ERROR(psvr, "Failed to shut down the headset!");
}
hid_close(psvr->hmd_control);
psvr->hmd_control = NULL;
}
if (psvr->hmd_handle != NULL) {
hid_close(psvr->hmd_handle);
psvr->hmd_handle = NULL;
}
}
/*
*
* xrt_device functions.
*
*/
static void
psvr_device_update_inputs(struct xrt_device *xdev,
struct time_state *timekeeping)
{
// Empty
}
static void
psvr_device_get_tracked_pose(struct xrt_device *xdev,
enum xrt_input_name name,
struct time_state *timekeeping,
int64_t *out_timestamp,
struct xrt_space_relation *out_relation)
{
struct psvr_device *psvr = psvr_device(xdev);
if (name != XRT_INPUT_GENERIC_HEAD_RELATION) {
PSVR_ERROR(psvr, "unknown input name");
return;
}
// Read all packets.
read_handle_packets(psvr);
read_control_packets(psvr);
// Clear out the relation.
2019-06-18 19:04:01 +00:00
U_ZERO(out_relation);
int64_t now = time_state_get_now(timekeeping);
//! @todo adjust for latency here
*out_timestamp = now;
out_relation->pose.orientation.w = 1.0f;
//! @todo assuming that orientation is actually currently tracked.
out_relation->relation_flags = (enum xrt_space_relation_flags)(
XRT_SPACE_RELATION_ORIENTATION_VALID_BIT |
XRT_SPACE_RELATION_ORIENTATION_TRACKED_BIT);
PSVR_SPEW(psvr, "\n\taccel = %f %f %f\n\tgyro = %f %f %f",
psvr->raw.accel.x, psvr->raw.accel.y, psvr->raw.accel.z,
psvr->raw.gyro.x, psvr->raw.gyro.y, psvr->raw.gyro.z);
}
static void
psvr_device_get_view_pose(struct xrt_device *xdev,
struct xrt_vec3 *eye_relation,
uint32_t view_index,
struct xrt_pose *out_pose)
{
struct xrt_pose pose = {{0.0f, 0.0f, 0.0f, 1.0f}, {0.0f, 0.0f, 0.0f}};
bool adjust = view_index == 0;
pose.position.x = eye_relation->x / 2.0f;
pose.position.y = eye_relation->y / 2.0f;
pose.position.z = eye_relation->z / 2.0f;
// Adjust for left/right while also making sure there aren't any -0.f.
if (pose.position.x > 0.0f && adjust) {
pose.position.x = -pose.position.x;
}
if (pose.position.y > 0.0f && adjust) {
pose.position.y = -pose.position.y;
}
if (pose.position.z > 0.0f && adjust) {
pose.position.z = -pose.position.z;
}
*out_pose = pose;
}
static void
psvr_device_destroy(struct xrt_device *xdev)
{
struct psvr_device *psvr = psvr_device(xdev);
teardown(psvr);
free(psvr);
}
/*
*
* Exported functions.
*
*/
struct xrt_device *
psvr_device_create(struct hid_device_info *hmd_handle_info,
struct hid_device_info *hmd_control_info,
bool print_spew,
bool print_debug)
{
enum u_device_alloc_flags flags = (enum u_device_alloc_flags)(
U_DEVICE_ALLOC_HMD | U_DEVICE_ALLOC_TRACKING_NONE);
struct psvr_device *psvr =
2019-06-07 12:22:59 +00:00
U_DEVICE_ALLOCATE(struct psvr_device, flags, 1, 0);
int ret;
psvr->print_spew = print_spew;
psvr->print_debug = print_debug;
psvr->base.update_inputs = psvr_device_update_inputs;
psvr->base.get_tracked_pose = psvr_device_get_tracked_pose;
psvr->base.get_view_pose = psvr_device_get_view_pose;
psvr->base.destroy = psvr_device_destroy;
psvr->base.inputs[0].name = XRT_INPUT_GENERIC_HEAD_RELATION;
2019-06-21 20:55:43 +00:00
snprintf(psvr->base.name, XRT_DEVICE_NAME_LEN, "PS VR Headset");
ret = open_hid(psvr, hmd_handle_info, &psvr->hmd_handle);
if (ret != 0) {
goto cleanup;
}
ret = open_hid(psvr, hmd_control_info, &psvr->hmd_control);
if (ret < 0) {
goto cleanup;
}
if (control_power_and_wait(psvr, true) < 0 ||
control_vrmode_and_wait(psvr, true) < 0) {
goto cleanup;
}
if (debug_get_bool_option_psvr_disco()) {
ret = disco_leds(psvr);
} else {
ret = control_leds(psvr, PSVR_LED_ALL, PSVR_LED_POWER_MAX,
(enum psvr_leds)0);
}
if (ret < 0) {
PSVR_ERROR(psvr, "Failed to control leds '%i'", ret);
goto cleanup;
}
/*
* Device setup.
*/
struct u_device_simple_info info;
info.display.w_pixels = 1980;
info.display.h_pixels = 1080;
info.display.w_meters = 0.126; // from calculated specs
info.display.h_meters = 0.071;
info.lens_horizontal_separation_meters = 0.0630999878f;
info.lens_vertical_position_meters = 0.0394899882f;
info.views[0].fov = 103.57f * M_PI / 180.0f;
info.views[1].fov = 103.57f * M_PI / 180.0f;
if (!u_device_setup_split_side_by_side(&psvr->base, &info)) {
PSVR_ERROR(psvr, "Failed to setup basic device info");
goto cleanup;
}
/*
* Finishing touches.
*/
if (psvr->print_debug) {
u_device_dump_config(&psvr->base, __func__, "Sony PSVR");
}
PSVR_DEBUG(psvr, "YES!");
return &psvr->base;
cleanup:
PSVR_DEBUG(psvr, "NO! :(");
teardown(psvr);
free(psvr);
return NULL;
}