monado/src/xrt/auxiliary/util/u_autoexpgain.c

494 lines
15 KiB
C
Raw Normal View History

// Copyright 2022, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Automatically compute exposure and gain values from an image stream
* @author Mateo de Mayo <mateo.demayo@collabora.com>
* @ingroup aux_util
*/
2022-05-17 21:12:53 +00:00
#include "math/m_api.h"
#include "util/u_autoexpgain.h"
2022-05-17 21:17:37 +00:00
#include "util/u_debug.h"
#include "util/u_format.h"
2022-05-17 21:17:37 +00:00
#include "util/u_logging.h"
#include "util/u_misc.h"
#include "util/u_var.h"
#include <assert.h>
#include <math.h>
#include <stdint.h>
2022-05-17 21:17:37 +00:00
DEBUG_GET_ONCE_LOG_OPTION(aeg_log, "AEG_LOG", U_LOGGING_WARN)
#define AEG_TRACE(...) U_LOG_IFL_T(aeg->log_level, __VA_ARGS__)
#define AEG_DEBUG(...) U_LOG_IFL_D(aeg->log_level, __VA_ARGS__)
#define AEG_INFO(...) U_LOG_IFL_I(aeg->log_level, __VA_ARGS__)
#define AEG_WARN(...) U_LOG_IFL_W(aeg->log_level, __VA_ARGS__)
#define AEG_ERROR(...) U_LOG_IFL_E(aeg->log_level, __VA_ARGS__)
#define AEG_ASSERT(predicate, ...) \
do { \
bool p = predicate; \
if (!p) { \
U_LOG(U_LOGGING_ERROR, __VA_ARGS__); \
assert(false && "AEG_ASSERT failed: " #predicate); \
exit(EXIT_FAILURE); \
} \
} while (false);
#define AEG_ASSERT_(predicate) AEG_ASSERT(predicate, "Assertion failed " #predicate)
#define LEVELS 256 //!< Possible pixel intensity values, only 8-bit supported
#define INITIAL_BRIGHTNESS 0.5
#define INITIAL_MAX_BRIGHTNESS_STEP 0.1
#define INITIAL_THRESHOLD 0.1
#define GRID_COLS 40 //!< Amount of columns for the histogram sample grid
//! AEG State machine states
enum u_aeg_state
{
IDLE,
BRIGHTEN,
STOP_BRIGHTEN, //!< Avoid oscillations by
DARKEN,
STOP_DARKEN, //!< Similar to STOP_BRIGHTEN
};
//! This actions are triggered when the image is too dark, bright or good enough
enum u_aeg_action
{
GOOD,
DARK,
BRIGHT,
};
//! Auto exposure and gain (AEG) adjustment algorithm state.
struct u_autoexpgain
{
bool enable; //!< Whether to enable auto exposure and gain adjustment
//! AEG is a finite state machine. @see set_state.
enum u_aeg_state state;
2022-05-17 21:17:37 +00:00
enum u_logging_level log_level;
//! Counts how many times we've overshooted in the last brightness change.
//! It's then used for exponential backoff of the brightness step.
int overshoots;
//! There are buffer states that wait `frame_delay` frames to ensure we are
//! not overshooting. This field counts the remaining frames to wait.
//! @see set_state
int wait;
//! The selected strategy affects various targets of the algorithm.
enum u_aeg_strategy strategy;
struct u_var_combo strategy_combo; //!< UI combo box for selecting `strategy`
float histogram[LEVELS]; //!< Pixel intensity histogram
struct u_var_histogram_f32 histogram_ui; //!< UI for `histogram`
//! This is a made up scalar that lives in the [0, 1] range. 0 maps to minimum
//! exp/gain values while 1 to their maximums. An autoexposure strategy limits
//! itself to modify this value. The mapping between the scalar and the
//! respective exp/gain values is provided by `brightness_to_expgain`.
struct u_var_draggable_f32 brightness;
float last_brightness; //!< Triggers a exp/gain update when it differs
float max_brightness_step; //!< Max `brightness` step for each update
//! The AEG score lives in the [-1, +1] range and represents how dark or
//! bright this image is. Values close to zero (by `threshold`) represent
//! images with a good enough `brightness` value.
float current_score;
//! Scores further than `threshold` from the target score will trigger a
//! `brightness` update.
float threshold;
//! A camera might take a couple of frames until the new exposure/gain sets in
//! the image. Knowing how many (this variable) helps in avoiding overshooting
//! brightness changes.
int frame_delay;
float exposure; //!< Currently computed exposure value to use
float gain; //!< Currently computed gain value to use
};
static const char *
state_to_string(enum u_aeg_state state)
{
if (state == IDLE) {
return "IDLE";
} else if (state == BRIGHTEN) {
return "BRIGHTEN";
} else if (state == STOP_BRIGHTEN) {
return "STOP_BRIGHTEN";
} else if (state == DARKEN) {
return "DARKEN";
} else if (state == STOP_DARKEN) {
return "STOP_DARKEN";
} else {
AEG_ASSERT_(false);
}
return NULL;
}
static const char *
action_to_string(enum u_aeg_action action)
{
if (action == DARK) {
return "DARK";
} else if (action == BRIGHT) {
return "BRIGHT";
} else if (action == GOOD) {
return "GOOD";
} else {
AEG_ASSERT_(false);
}
return NULL;
}
/*!
* Defines the AEG state machine transitions.
* The main idea is that if brightness needs to change then we go from `IDLE` to
* `BRIGHTEN`/`DARKEN`. To avoid oscillations we detect overshootings
* and exponentially backoff our brightness step. We only reset our `overshoots`
* counter after the image have been good for `frame_delay` frames, this delay
* is counted during `STOP_DARKEN`/`STOP_BRIGHTEN` states.
*
* A diagram of the state machine is below:
* ![AEG state machine](images/autoexpgain.drawio.svg)
*/
static void
set_state(struct u_autoexpgain *aeg, enum u_aeg_action action)
{
enum u_aeg_state new_state;
if (aeg->state == IDLE) {
if (action == DARK) {
new_state = BRIGHTEN;
} else if (action == BRIGHT) {
new_state = DARKEN;
} else if (action == GOOD) {
new_state = IDLE;
} else {
AEG_ASSERT_(false);
}
} else if (aeg->state == BRIGHTEN) {
if (action == DARK) {
new_state = BRIGHTEN;
} else if (action == BRIGHT) {
aeg->overshoots++;
new_state = DARKEN;
} else if (action == GOOD) {
new_state = STOP_BRIGHTEN;
} else {
AEG_ASSERT_(false);
}
} else if (aeg->state == STOP_BRIGHTEN) {
if (action == DARK) {
new_state = BRIGHTEN;
} else if (action == BRIGHT) {
aeg->overshoots++;
new_state = DARKEN;
} else if (action == GOOD) {
aeg->wait--;
new_state = aeg->wait == 0 ? IDLE : STOP_BRIGHTEN;
} else {
AEG_ASSERT_(false);
}
if (new_state != STOP_BRIGHTEN) {
aeg->wait = aeg->frame_delay;
}
} else if (aeg->state == DARKEN) {
if (action == DARK) {
aeg->overshoots++;
new_state = BRIGHTEN;
} else if (action == BRIGHT) {
new_state = DARKEN;
} else if (action == GOOD) {
new_state = STOP_DARKEN;
} else {
AEG_ASSERT_(false);
}
} else if (aeg->state == STOP_DARKEN) {
if (action == DARK) {
aeg->overshoots++;
new_state = BRIGHTEN;
} else if (action == BRIGHT) {
new_state = DARKEN;
} else if (action == GOOD) {
aeg->wait--;
new_state = aeg->wait == 0 ? IDLE : STOP_DARKEN;
} else {
AEG_ASSERT_(false);
}
if (new_state != STOP_DARKEN) {
aeg->wait = aeg->frame_delay;
}
} else {
AEG_ASSERT_(false);
}
if (new_state == IDLE) {
aeg->overshoots = 0;
}
aeg->overshoots = CLAMP(aeg->overshoots, 0, 3);
AEG_TRACE("[%s] ---%s--> [%s] (overshoots=%d, wait=%d)", state_to_string(aeg->state), action_to_string(action),
state_to_string(new_state), aeg->overshoots, aeg->wait);
aeg->state = new_state;
}
//! Maps a `brightness` in [0, 1] to a pair of exposure and gain values based on
//! a piecewise function.
static void
brightness_to_expgain(struct u_autoexpgain *aeg, float brightness, float *out_exposure, float *out_gain)
{
//! These are steps for constructing a piecewise linear function that maps
//! brightness into (exposure, gain) pairs.
struct step
{
float b; //!< Brightness
float e; //!< Exposure
float g; //!< Gain
};
// These tables were tuned over WMR cameras such that increasing
// brightness increases the histogram range more or less linearly.
struct step steps_t[] = {{0, 120, 16}, {0.15, 4500, 16}, {0.5, 4500, 127},
{0.55, 6000, 127}, {0.9, 6000, 255}, {1, 9000, 255}};
struct step steps_dr[] = {{0, 120, 16}, {0.3, 9000, 16}, {1.0, 9000, 255}};
// Select the steps table to use based on our strategy/objective
struct step *steps = NULL;
int steps_count = 0;
if (aeg->strategy == U_AEG_STRATEGY_TRACKING) {
steps = steps_t;
steps_count = sizeof(steps_t) / sizeof(struct step);
} else if (aeg->strategy == U_AEG_STRATEGY_DYNAMIC_RANGE) {
steps = steps_dr;
steps_count = sizeof(steps_dr) / sizeof(struct step);
} else {
2022-05-17 21:17:37 +00:00
AEG_ASSERT(false, "Unexpected strategy=%d", aeg->strategy);
}
// Other simpler tables that might work for WMR are:
// {{0, 120, 16}, {0.2, 6000, 16}, {1.0, 6000, 255}};
// {{0, 120, 16}, {0.2, 6000, 16}, {0.9, 6000, 255}, {1.0, 9000, 255}};
// Assertions
2022-05-17 21:17:37 +00:00
AEG_ASSERT(steps_count >= 2, "Expected at least two steps but %d found", steps_count);
AEG_ASSERT(steps[0].b == 0, "First step should be at b=0");
AEG_ASSERT(steps[steps_count - 1].b == 1, "Last step should be at b=1");
AEG_ASSERT(brightness >= 0 && brightness <= 1, "Invalid brightness=%f", brightness);
// Compute the piecewise function result from `steps`
float exposure = 0;
float gain = 0;
for (int i = 1; i < steps_count; i++) {
struct step s0 = steps[i - 1];
struct step s1 = steps[i];
float lower_b = s0.b;
float higher_b = s1.b;
if (brightness >= lower_b && brightness <= higher_b) {
exposure = s0.e + ((brightness - lower_b) / (higher_b - lower_b)) * (s1.e - s0.e);
gain = s0.g + ((brightness - lower_b) / (higher_b - lower_b)) * (s1.g - s0.g);
break;
}
}
*out_exposure = exposure;
*out_gain = gain;
}
//! Update `exposure` and `gain` based on current `brightness` value.
static void
update_expgain(struct u_autoexpgain *aeg)
{
float brightness = aeg->brightness.val;
if (aeg->last_brightness == brightness) {
return;
}
aeg->last_brightness = brightness;
2022-05-17 21:17:37 +00:00
brightness_to_expgain(aeg, brightness, &aeg->exposure, &aeg->gain);
}
//! Returns a value in the range [-1, 1] describing how dark-bright the image
//! is, 0 means it's alright.
static float
get_score(struct u_autoexpgain *aeg, struct xrt_frame *xf)
{
uint32_t w = xf->width;
uint32_t h = xf->height;
uint32_t s = w / GRID_COLS; // Grid cell size
// Compute histogram (PDF)
int histogram[LEVELS] = {0};
int samples_count = 0;
size_t pixel_size = u_format_block_size(xf->format);
for (uint32_t y = 0; y < h; y += s) {
for (uint32_t x = 0; x < w; x += s) {
// Note that for multichannel images only the first channel is in use.
uint8_t intensity = xf->data[y * xf->stride + x * pixel_size];
histogram[intensity]++;
samples_count++;
}
}
// Draw histogram
for (int i = 0; i < LEVELS; i++) {
aeg->histogram[i] = histogram[i];
}
// Compute mean
float mean = 0;
for (int i = 0; i < LEVELS; i++) {
mean += (float)i * histogram[i];
}
mean /= samples_count;
float score = 0;
2022-05-17 21:17:37 +00:00
// Score that tries to make the mean reach a `target_mean`.
float target_mean = -1;
if (aeg->strategy == U_AEG_STRATEGY_TRACKING) {
// We are not that much interested in using the full dynamic range for tracking
// so we prefer a darkish image because that reduces exposure and gain.
target_mean = LEVELS / 4;
} else if (aeg->strategy == U_AEG_STRATEGY_DYNAMIC_RANGE) {
target_mean = LEVELS / 2;
2022-05-17 21:17:37 +00:00
} else {
AEG_ASSERT(false, "Unexpected strategy=%d", aeg->strategy);
}
const float range_size = mean < target_mean ? target_mean : (LEVELS - target_mean);
score = (mean - target_mean) / range_size;
score = CLAMP(score, -1, 1);
return score;
}
static void
update_brightness(struct u_autoexpgain *aeg, struct xrt_frame *xf)
{
float score = get_score(aeg, xf);
aeg->current_score = score;
if (!aeg->enable) {
return;
}
float target_score;
if (aeg->strategy == U_AEG_STRATEGY_TRACKING) {
target_score = -aeg->threshold; // Makes 0 the right bound of our "good enugh" range
} else if (aeg->strategy == U_AEG_STRATEGY_DYNAMIC_RANGE) {
target_score = 0;
} else {
AEG_ASSERT(false, "Unexpected strategy=%d", aeg->strategy);
}
enum u_aeg_action action; // State machine input action
if (score > target_score + aeg->threshold) {
action = BRIGHT;
} else if (score < target_score - aeg->threshold) {
action = DARK;
} else {
action = GOOD;
}
set_state(aeg, action);
if (aeg->state != BRIGHTEN && aeg->state != DARKEN) {
return;
}
float max_step = aeg->max_brightness_step;
float step = max_step * score / powf(2.0f, aeg->overshoots);
aeg->brightness.val -= CLAMP(step, -max_step, max_step);
aeg->brightness.val = CLAMP(aeg->brightness.val, 0, 1);
}
/*
*
* Exported functions
*
*/
struct u_autoexpgain *
u_autoexpgain_create(enum u_aeg_strategy strategy, bool enabled_from_start, int frame_delay)
{
struct u_autoexpgain *aeg = U_TYPED_CALLOC(struct u_autoexpgain);
aeg->enable = enabled_from_start;
2022-05-17 21:17:37 +00:00
aeg->log_level = debug_get_log_option_aeg_log();
aeg->state = IDLE;
aeg->wait = frame_delay;
aeg->overshoots = 0;
aeg->strategy = strategy;
aeg->strategy_combo.count = U_AEG_STRATEGY_COUNT;
aeg->strategy_combo.options = "Tracking\0Dynamic Range\0\0";
aeg->strategy_combo.value = (int *)&aeg->strategy;
aeg->histogram_ui.values = aeg->histogram;
aeg->histogram_ui.count = LEVELS;
aeg->brightness.max = 1;
aeg->brightness.min = 0;
aeg->brightness.step = 0.002;
aeg->brightness.val = INITIAL_BRIGHTNESS;
aeg->last_brightness = INITIAL_BRIGHTNESS;
2022-05-17 21:17:37 +00:00
aeg->max_brightness_step = INITIAL_MAX_BRIGHTNESS_STEP;
aeg->threshold = INITIAL_THRESHOLD;
aeg->frame_delay = frame_delay;
brightness_to_expgain(aeg, INITIAL_BRIGHTNESS, &aeg->exposure, &aeg->gain);
return aeg;
}
void
u_autoexpgain_add_vars(struct u_autoexpgain *aeg, void *root)
{
2022-05-17 21:17:37 +00:00
u_var_add_bool(root, &aeg->enable, "Update brightness automatically");
u_var_add_i32(root, &aeg->frame_delay, "Frame update delay");
u_var_add_combo(root, &aeg->strategy_combo, "Strategy");
u_var_add_draggable_f32(root, &aeg->brightness, "Brightness");
u_var_add_f32(root, &aeg->threshold, "Score threshold");
u_var_add_f32(root, &aeg->max_brightness_step, "Max brightness step");
u_var_add_ro_f32(root, &aeg->current_score, "Image score");
u_var_add_histogram_f32(root, &aeg->histogram_ui, "Intensity histogram");
2022-05-17 21:17:37 +00:00
u_var_add_log_level(root, &aeg->log_level, "AEG log level");
}
void
u_autoexpgain_update(struct u_autoexpgain *aeg, struct xrt_frame *xf)
{
update_brightness(aeg, xf);
update_expgain(aeg);
}
float
u_autoexpgain_get_exposure(struct u_autoexpgain *aeg)
{
return aeg->exposure;
}
float
u_autoexpgain_get_gain(struct u_autoexpgain *aeg)
{
return aeg->gain;
}
void
u_autoexpgain_destroy(struct u_autoexpgain **aeg)
{
free(*aeg);
*aeg = NULL;
}