monado/src/xrt/ipc/ipc_server_client.c

447 lines
11 KiB
C
Raw Normal View History

// Copyright 2020, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Common server side code.
* @author Pete Black <pblack@collabora.com>
* @ingroup ipc_server
*/
#include "xrt/xrt_gfx_fd.h"
#include "util/u_misc.h"
#include "ipc_server.h"
#include "ipc_server_utils.h"
#include "ipc_server_generated.h"
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/types.h>
#include <stdbool.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>
#include <assert.h>
#include <stdio.h>
#include <sys/epoll.h>
/*
*
* Handle functions.
*
*/
ipc_result_t
ipc_handle_instance_get_shm_fd(volatile struct ipc_client_state *cs,
size_t max_num_fds,
int *out_fds,
size_t *out_num_fds)
{
assert(max_num_fds >= 1);
out_fds[0] = cs->server->ism_fd;
*out_num_fds = 1;
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_session_begin(volatile struct ipc_client_state *cs)
{
cs->active = true;
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_session_end(volatile struct ipc_client_state *cs)
{
cs->active = false;
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_compositor_get_formats(volatile struct ipc_client_state *cs,
struct ipc_formats_info *out_info)
{
out_info->num_formats = cs->xc->num_formats;
for (size_t i = 0; i < cs->xc->num_formats; i++) {
out_info->formats[i] = cs->xc->formats[i];
}
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_compositor_wait_frame(volatile struct ipc_client_state *cs,
uint64_t *out_predicted_display_time,
uint64_t *out_predicted_display_period)
{
xrt_comp_wait_frame(cs->xc, out_predicted_display_time,
out_predicted_display_period);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_compositor_begin_frame(volatile struct ipc_client_state *cs)
{
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_compositor_discard_frame(volatile struct ipc_client_state *cs)
{
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_compositor_layer_sync(volatile struct ipc_client_state *cs,
uint32_t slot_id,
uint32_t *out_free_slot_id)
{
struct ipc_shared_memory *ism = cs->server->ism;
struct ipc_layer_slot *slot = &ism->slots[slot_id];
struct ipc_layer_stereo_projection *stereo = &slot->layers[0].stereo;
cs->render_state.l_swapchain_index = stereo->l.swapchain_id;
cs->render_state.l_image_index = stereo->l.image_index;
cs->render_state.r_swapchain_index = stereo->r.swapchain_id;
cs->render_state.r_image_index = stereo->r.image_index;
cs->render_state.rendering = true;
*out_free_slot_id = (slot_id + 1) % IPC_MAX_SLOTS;
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_swapchain_create(volatile struct ipc_client_state *cs,
uint32_t width,
uint32_t height,
uint64_t format,
uint32_t *out_id,
uint32_t *out_num_images,
uint64_t *out_size,
size_t max_num_fds,
int *out_fds,
size_t *out_num_fds)
{
enum xrt_swapchain_create_flags flags =
XRT_SWAPCHAIN_CREATE_STATIC_IMAGE;
enum xrt_swapchain_usage_bits usage =
XRT_SWAPCHAIN_CREATE_STATIC_IMAGE | XRT_SWAPCHAIN_USAGE_COLOR;
uint32_t sample_count = 1;
uint32_t face_count = 1;
uint32_t array_size = 1;
uint32_t mip_count = 1;
// create the swapchain
struct xrt_swapchain *xsc =
xrt_comp_create_swapchain(cs->xc, // Compositor
flags, // Flags
usage, // Usage
format, // Format
sample_count, // Sample count
width, // Width
height, // Height
face_count, // Face count
array_size, // Array size
mip_count); // Mip count
uint32_t index = cs->num_swapchains;
uint32_t num_images = xsc->num_images;
// Our handle is just the index for now
uint32_t handle = index;
cs->xscs[index] = xsc;
cs->swapchain_data[index].width = width;
cs->swapchain_data[index].height = height;
cs->swapchain_data[index].format = format;
cs->swapchain_data[index].num_images = num_images;
cs->swapchain_handles[index] = handle;
// It's now safe to increment the number of swapchains.
cs->num_swapchains++;
// return our result to the caller.
struct xrt_swapchain_fd *xcsfd = (struct xrt_swapchain_fd *)xsc;
// Sanity checking.
assert(num_images <= IPC_MAX_SWAPCHAIN_FDS);
assert(num_images <= max_num_fds);
*out_id = handle;
*out_size = xcsfd->images[0].size;
*out_num_images = num_images;
// Setup the fds.
*out_num_fds = num_images;
for (size_t i = 0; i < num_images; i++) {
out_fds[i] = xcsfd->images[i].fd;
}
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_swapchain_wait_image(volatile struct ipc_client_state *cs,
uint32_t id,
uint64_t timeout,
uint32_t index)
{
//! @todo Look up the index.
uint32_t sc_index = id;
struct xrt_swapchain *xsc = cs->xscs[sc_index];
xrt_swapchain_wait_image(xsc, timeout, index);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_swapchain_acquire_image(volatile struct ipc_client_state *cs,
uint32_t id,
uint32_t *out_index)
{
//! @todo Look up the index.
uint32_t sc_index = id;
struct xrt_swapchain *xsc = cs->xscs[sc_index];
xrt_swapchain_acquire_image(xsc, out_index);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_swapchain_release_image(volatile struct ipc_client_state *cs,
uint32_t id,
uint32_t index)
{
//! @todo Look up the index.
uint32_t sc_index = id;
struct xrt_swapchain *xsc = cs->xscs[sc_index];
xrt_swapchain_release_image(xsc, index);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_swapchain_destroy(volatile struct ipc_client_state *cs, uint32_t id)
{
//! @todo Implement destroy swapchain.
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_device_update_input(volatile struct ipc_client_state *cs,
uint32_t id)
{
// To make the code a bit more readable.
uint32_t device_id = id;
struct ipc_shared_memory *ism = cs->server->ism;
struct xrt_device *xdev = cs->server->xdevs[device_id];
struct ipc_shared_device *idev = &ism->idevs[device_id];
// Update inputs.
xrt_device_update_inputs(xdev);
// Copy data into the shared memory.
struct xrt_input *src = xdev->inputs;
struct xrt_input *dst = &ism->inputs[idev->first_input_index];
memcpy(dst, src, sizeof(struct xrt_input) * idev->num_inputs);
// Reply.
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_device_get_tracked_pose(volatile struct ipc_client_state *cs,
uint32_t id,
enum xrt_input_name name,
uint64_t at_timestamp,
uint64_t *out_timestamp,
struct xrt_space_relation *out_relation)
{
// To make the code a bit more readable.
uint32_t device_id = id;
struct xrt_device *xdev = cs->server->xdevs[device_id];
// Get the pose.
xrt_device_get_tracked_pose(xdev, name, at_timestamp, out_timestamp,
out_relation);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_device_get_view_pose(volatile struct ipc_client_state *cs,
uint32_t id,
struct xrt_vec3 *eye_relation,
uint32_t view_index,
struct xrt_pose *out_pose)
{
// To make the code a bit more readable.
uint32_t device_id = id;
struct xrt_device *xdev = cs->server->xdevs[device_id];
// Get the pose.
xrt_device_get_view_pose(xdev, eye_relation, view_index, out_pose);
return IPC_SUCCESS;
}
ipc_result_t
ipc_handle_device_set_output(volatile struct ipc_client_state *cs,
uint32_t id,
enum xrt_output_name name,
union xrt_output_value *value)
{
// To make the code a bit more readable.
uint32_t device_id = id;
struct xrt_device *xdev = cs->server->xdevs[device_id];
// Set the output.
xrt_device_set_output(xdev, name, value);
return IPC_SUCCESS;
}
/*
*
* Helper functions.
*
*/
static int
setup_epoll(int listen_socket)
{
int ret = epoll_create1(EPOLL_CLOEXEC);
if (ret < 0) {
return ret;
}
int epoll_fd = ret;
struct epoll_event ev = {0};
ev.events = EPOLLIN;
ev.data.fd = listen_socket;
ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, listen_socket, &ev);
if (ret < 0) {
fprintf(stderr, "ERROR: epoll_ctl(listen_socket) failed '%i'\n",
ret);
return ret;
}
return epoll_fd;
}
/*
*
* Client loop.
*
*/
static void
client_loop(volatile struct ipc_client_state *cs)
{
fprintf(stderr, "SERVER: Client connected\n");
// Claim the client fd.
int epoll_fd = setup_epoll(cs->ipc_socket_fd);
if (epoll_fd < 0) {
return;
}
uint8_t buf[IPC_BUF_SIZE];
while (cs->server->running) {
const int half_a_second_ms = 500;
struct epoll_event event = {0};
// We use epoll here to be able to timeout.
int ret = epoll_wait(epoll_fd, &event, 1, half_a_second_ms);
if (ret < 0) {
fprintf(stderr, "ERROR: Failed epoll_wait '%i'\n", ret);
break;
}
// Timed out, loop again.
if (ret == 0) {
continue;
}
// Detect clients disconnecting gracefully.
if (ret > 0 && (event.events & EPOLLHUP) != 0) {
break;
}
// Finally get the data that is waiting for us.
ssize_t len = recv(cs->ipc_socket_fd, &buf, IPC_BUF_SIZE, 0);
if (len < 4) {
fprintf(stderr, "ERROR: Invalid packet received\n");
break;
}
// Check the first 4 bytes of the message and dispatch.
ipc_command_t *ipc_command = (uint32_t *)buf;
ret = ipc_dispatch(cs, ipc_command);
if (ret < 0) {
fprintf(stderr, "ERROR: Failed to dispatch packet\n");
break;
}
}
fprintf(stderr, "SERVER: Client disconnected\n");
close(epoll_fd);
epoll_fd = -1;
close(cs->ipc_socket_fd);
cs->ipc_socket_fd = -1;
cs->active = false;
cs->num_swapchains = 0;
for (uint32_t j = 0; j < IPC_MAX_CLIENT_SWAPCHAINS; j++) {
xrt_swapchain_destroy((struct xrt_swapchain **)&cs->xscs[j]);
cs->swapchain_handles[j] = -1;
}
// Should we stop the server when a client disconnects?
if (cs->server->exit_on_disconnect) {
cs->server->running = false;
}
}
/*
*
* Entry point.
*
*/
void *
ipc_server_client_thread(void *_cs)
{
volatile struct ipc_client_state *cs = _cs;
client_loop(cs);
cs->server->thread_stopping = true;
cs->server->thread_started = false;
return NULL;
}