monado/src/xrt/auxiliary/math/m_optics.c

161 lines
4.6 KiB
C
Raw Normal View History

2019-03-18 05:52:32 +00:00
// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief Functions related to field-of-view.
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @ingroup aux_math
2019-03-18 05:52:32 +00:00
*/
#include "math/m_mathinclude.h"
#include "math/m_api.h"
2019-03-18 05:52:32 +00:00
#include "util/u_debug.h"
2019-03-18 05:52:32 +00:00
#include <math.h>
#include <stdio.h>
#include <assert.h>
2019-03-18 05:52:32 +00:00
DEBUG_GET_ONCE_BOOL_OPTION(views, "MATH_DEBUG_VIEWS", false)
/*!
* Perform some of the computations from
* "Computing Half-Fields-Of-View from Simpler Display Models",
* to solve for the half-angles for a triangle where we know the center and
* total angle but not the "distance".
*
* In the diagram below, the top angle is theta_total, the length of the bottom
* is w_total, and the distance between the vertical line and the left corner is
* w_1.
* out_theta_1 is the angle at the top of the left-most right triangle,
* out_theta_2 is the angle at the top of the right-most right triangle,
* and out_d is the length of that center vertical line, a logical "distance".
*
* Any outparams that are NULL will simply not be set.
*
* The triangle need not be symmetrical, despite how the diagram looks.
*
* ```
* theta_total
* *
* theta_1 -> / | \ <- theta_2
* / | \
* / |d \
* / | \
* -------------
* [ w_1 ][ w_2 ]
*
* [ --- w --- ]
* ```
*
* Distances are in arbitrary but consistent units. Angles are in radians.
*
* @return true if successful.
*/
static bool
2021-01-14 14:13:48 +00:00
math_solve_triangle(
double w_total, double w_1, double theta_total, double *out_theta_1, double *out_theta_2, double *out_d)
2019-03-18 05:52:32 +00:00
{
/* should have at least one out-variable */
assert(out_theta_1 || out_theta_2 || out_d);
const double w_2 = w_total - w_1;
const double u = w_2 / w_1;
const double v = tan(theta_total);
/* Parts of the quadratic formula solution */
const double b = u + 1.0;
const double root = sqrt(b + 4 * u * v * v);
const double two_a = 2 * v;
/* The two possible solutions. */
const double tan_theta_2_plus = (-b + root) / two_a;
const double tan_theta_2_minus = (-b - root) / two_a;
const double theta_2_plus = atan(tan_theta_2_plus);
const double theta_2_minus = atan(tan_theta_2_minus);
/* Pick the solution that is in the right range. */
double tan_theta_2 = 0;
double theta_2 = 0;
if (theta_2_plus > 0.f && theta_2_plus < theta_total) {
// OH_DEBUG(ohd, "Using the + solution to the quadratic.");
tan_theta_2 = tan_theta_2_plus;
theta_2 = theta_2_plus;
} else if (theta_2_minus > 0.f && theta_2_minus < theta_total) {
// OH_DEBUG(ohd, "Using the - solution to the quadratic.");
tan_theta_2 = tan_theta_2_minus;
theta_2 = theta_2_minus;
} else {
// OH_ERROR(ohd, "NEITHER QUADRATIC SOLUTION APPLIES!");
return false;
}
#define METERS_FORMAT "%0.4fm"
#define DEG_FORMAT "%0.1f deg"
if (debug_get_bool_option_views()) {
const double rad_to_deg = M_1_PI * 180.0;
// comments are to force wrapping
2021-01-14 14:13:48 +00:00
U_LOG_D("w=" METERS_FORMAT " theta=" DEG_FORMAT " w1=" METERS_FORMAT " theta1=" DEG_FORMAT
" w2=" METERS_FORMAT " theta2=" DEG_FORMAT " d=" METERS_FORMAT,
2019-03-18 05:52:32 +00:00
w_total, theta_total * rad_to_deg, //
w_1, (theta_total - theta_2) * rad_to_deg, //
w_2, theta_2 * rad_to_deg, //
w_2 / tan_theta_2);
}
if (out_theta_2) {
*out_theta_2 = theta_2;
}
if (out_theta_1) {
*out_theta_1 = theta_total - theta_2;
}
if (out_d) {
*out_d = w_2 / tan_theta_2;
}
return true;
}
bool
math_compute_fovs(double w_total,
double w_1,
double horizfov_total,
double h_total,
double h_1,
double vertfov_total,
struct xrt_fov *fov)
{
double d = 0;
double theta_1 = 0;
double theta_2 = 0;
2021-01-14 14:13:48 +00:00
if (!math_solve_triangle(w_total, w_1, horizfov_total, &theta_1, &theta_2, &d)) {
2019-03-18 05:52:32 +00:00
/* failure is contagious */
return false;
}
fov->angle_left = -theta_1;
fov->angle_right = theta_2;
double phi_1 = 0;
double phi_2 = 0;
if (vertfov_total == 0) {
phi_1 = atan(h_1 / d);
/* h_2 is "up".
* so the corresponding phi_2 is naturally positive.
*/
const double h_2 = h_total - h_1;
phi_2 = atan(h_2 / d);
} else {
/* Run the same algorithm again for vertical. */
2021-01-14 14:13:48 +00:00
if (!math_solve_triangle(h_total, h_1, vertfov_total, &phi_1, &phi_2, NULL)) {
2019-03-18 05:52:32 +00:00
/* failure is contagious */
return false;
}
}
/* phi_1 is "down" so we record this as negative. */
fov->angle_down = phi_1 * -1.0;
fov->angle_up = phi_2;
return true;
}