monado/src/xrt/auxiliary/tracking/t_imu.cpp

162 lines
4.1 KiB
C++
Raw Normal View History

// Copyright 2019, Collabora, Ltd.
// SPDX-License-Identifier: BSL-1.0
/*!
* @file
* @brief IMU fusion implementation - for inclusion into the single
* kalman-incuding translation unit.
* @author Ryan Pavlik <ryan.pavlik@collabora.com>
* @ingroup aux_tracking
*/
#include "t_imu.h"
#include "t_imu_fusion.h"
#include "math/m_eigen_interop.h"
#include <memory>
struct imu_fusion
{
uint64_t time_ns{};
xrt_fusion::SimpleIMUFusion simple_fusion;
};
/*
* API functions
*/
struct imu_fusion *
imu_fusion_create() try
{
auto fusion = std::make_unique<imu_fusion>();
return fusion.release();
} catch (...) {
return NULL;
}
void
imu_fusion_destroy(struct imu_fusion *fusion) try {
delete fusion;
} catch (...) {
assert(false && "Caught exception on destroy");
}
int
imu_fusion_incorporate_gyros(struct imu_fusion *fusion,
float dt,
struct xrt_vec3 const *ang_vel,
struct xrt_vec3 const *variance) try {
assert(fusion);
assert(ang_vel);
assert(variance);
fusion->simple_fusion.handleGyro(map_vec3(*ang_vel).cast<double>(), dt);
return 0;
} catch (...) {
assert(false && "Caught exception on incorporate gyros");
return -1;
}
int
imu_fusion_incorporate_accelerometer(struct imu_fusion *fusion,
float dt,
struct xrt_vec3 const *accel,
float scale,
struct xrt_vec3 const *reference,
struct xrt_vec3 const *variance) try {
assert(fusion);
assert(accel);
assert(variance);
fusion->simple_fusion.handleAccel(map_vec3(*accel).cast<double>(), dt);
return 0;
} catch (...) {
assert(false && "Caught exception on incorporate accelerometer");
return -1;
}
int
imu_fusion_get_prediction(struct imu_fusion const *fusion,
float dt,
struct xrt_quat *out_quat,
struct xrt_vec3 *out_ang_vel) try {
assert(fusion);
assert(out_quat);
assert(out_ang_vel);
if (!fusion->simple_fusion.valid()) {
return -2;
}
map_vec3(*out_ang_vel) =
fusion->simple_fusion.getAngVel().cast<float>();
if (dt == 0) {
// No need to predict here.
map_quat(*out_quat) =
fusion->simple_fusion.getQuat().cast<float>();
return 0;
}
Eigen::Quaterniond predicted_quat =
fusion->simple_fusion.getPredictedQuat(dt);
map_quat(*out_quat) = predicted_quat.cast<float>();
return 0;
} catch (...) {
assert(false && "Caught exception on getting prediction");
return -1;
}
int
imu_fusion_get_prediction_rotation_vec(struct imu_fusion const *fusion,
float dt,
struct xrt_vec3 *out_rotation_vec) try {
assert(fusion);
assert(out_rotation_vec);
if (!fusion->simple_fusion.valid()) {
return -2;
}
if (dt == 0) {
// No need to predict here.
map_vec3(*out_rotation_vec) =
fusion->simple_fusion.getRotationVec().cast<float>();
} else {
Eigen::Quaterniond predicted_quat =
fusion->simple_fusion.getPredictedQuat(dt);
map_vec3(*out_rotation_vec) =
flexkalman::util::quat_ln(predicted_quat).cast<float>();
}
return 0;
} catch (...) {
assert(false && "Caught exception on getting prediction");
return -1;
}
int
imu_fusion_incorporate_gyros_and_accelerometer(
struct imu_fusion *fusion,
float dt,
struct xrt_vec3 const *ang_vel,
struct xrt_vec3 const *ang_vel_variance,
struct xrt_vec3 const *accel,
float accel_scale,
struct xrt_vec3 const *accel_reference,
struct xrt_vec3 const *accel_variance) try {
assert(fusion);
assert(ang_vel);
assert(ang_vel_variance);
assert(accel);
assert(accel_reference);
assert(accel_variance);
Eigen::Vector3d accelVec = map_vec3(*accel).cast<double>();
Eigen::Vector3d angVelVec = map_vec3(*ang_vel).cast<double>();
fusion->simple_fusion.handleAccel(accelVec, dt);
fusion->simple_fusion.handleGyro(angVelVec, dt);
fusion->simple_fusion.postCorrect();
return 0;
} catch (...) {
assert(false &&
"Caught exception on incorporate gyros and accelerometer");
return -1;
}