mirror of
https://github.com/PabloMK7/citra.git
synced 2025-01-01 12:46:10 +00:00
Merge pull request #2858 from MerryMage/interp-on-a-frame-basis
interpolate: Interpolate on a frame-by-frame basis
This commit is contained in:
commit
e450a2d2b8
|
@ -244,17 +244,27 @@ void Source::GenerateFrame() {
|
|||
break;
|
||||
}
|
||||
|
||||
const size_t size_to_copy =
|
||||
std::min(state.current_buffer.size(), current_frame.size() - frame_position);
|
||||
|
||||
std::copy(state.current_buffer.begin(), state.current_buffer.begin() + size_to_copy,
|
||||
current_frame.begin() + frame_position);
|
||||
state.current_buffer.erase(state.current_buffer.begin(),
|
||||
state.current_buffer.begin() + size_to_copy);
|
||||
|
||||
frame_position += size_to_copy;
|
||||
state.next_sample_number += static_cast<u32>(size_to_copy);
|
||||
switch (state.interpolation_mode) {
|
||||
case InterpolationMode::None:
|
||||
AudioInterp::None(state.interp_state, state.current_buffer, state.rate_multiplier,
|
||||
current_frame, frame_position);
|
||||
break;
|
||||
case InterpolationMode::Linear:
|
||||
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
|
||||
current_frame, frame_position);
|
||||
break;
|
||||
case InterpolationMode::Polyphase:
|
||||
// TODO(merry): Implement polyphase interpolation
|
||||
LOG_DEBUG(Audio_DSP, "Polyphase interpolation unimplemented; falling back to linear");
|
||||
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
|
||||
current_frame, frame_position);
|
||||
break;
|
||||
default:
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
}
|
||||
state.next_sample_number += frame_position;
|
||||
|
||||
state.filters.ProcessFrame(current_frame);
|
||||
}
|
||||
|
@ -305,25 +315,6 @@ bool Source::DequeueBuffer() {
|
|||
return true;
|
||||
}
|
||||
|
||||
switch (state.interpolation_mode) {
|
||||
case InterpolationMode::None:
|
||||
state.current_buffer =
|
||||
AudioInterp::None(state.interp_state, state.current_buffer, state.rate_multiplier);
|
||||
break;
|
||||
case InterpolationMode::Linear:
|
||||
state.current_buffer =
|
||||
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier);
|
||||
break;
|
||||
case InterpolationMode::Polyphase:
|
||||
// TODO(merry): Implement polyphase interpolation
|
||||
state.current_buffer =
|
||||
AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier);
|
||||
break;
|
||||
default:
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
|
||||
// the first playthrough starts at play_position, loops start at the beginning of the buffer
|
||||
state.current_sample_number = (!buf.has_played) ? buf.play_position : 0;
|
||||
state.next_sample_number = state.current_sample_number;
|
||||
|
|
|
@ -13,74 +13,64 @@ namespace AudioInterp {
|
|||
constexpr u64 scale_factor = 1 << 24;
|
||||
constexpr u64 scale_mask = scale_factor - 1;
|
||||
|
||||
/// Here we step over the input in steps of rate_multiplier, until we consume all of the input.
|
||||
/// Here we step over the input in steps of rate, until we consume all of the input.
|
||||
/// Three adjacent samples are passed to fn each step.
|
||||
template <typename Function>
|
||||
static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input,
|
||||
float rate_multiplier, Function fn) {
|
||||
ASSERT(rate_multiplier > 0);
|
||||
static void StepOverSamples(State& state, StereoBuffer16& input, float rate,
|
||||
DSP::HLE::StereoFrame16& output, size_t& outputi, Function fn) {
|
||||
ASSERT(rate > 0);
|
||||
|
||||
if (input.size() < 2)
|
||||
return {};
|
||||
if (input.empty())
|
||||
return;
|
||||
|
||||
StereoBuffer16 output;
|
||||
output.reserve(static_cast<size_t>(input.size() / rate_multiplier));
|
||||
input.insert(input.begin(), {state.xn2, state.xn1});
|
||||
|
||||
u64 step_size = static_cast<u64>(rate_multiplier * scale_factor);
|
||||
const u64 step_size = static_cast<u64>(rate * scale_factor);
|
||||
u64 fposition = state.fposition;
|
||||
size_t inputi = 0;
|
||||
|
||||
u64 fposition = 0;
|
||||
const u64 max_fposition = input.size() * scale_factor;
|
||||
while (outputi < output.size()) {
|
||||
inputi = static_cast<size_t>(fposition / scale_factor);
|
||||
|
||||
if (inputi + 2 >= input.size()) {
|
||||
inputi = input.size() - 2;
|
||||
break;
|
||||
}
|
||||
|
||||
while (fposition < 1 * scale_factor) {
|
||||
u64 fraction = fposition & scale_mask;
|
||||
|
||||
output.push_back(fn(fraction, state.xn2, state.xn1, input[0]));
|
||||
output[outputi++] = fn(fraction, input[inputi], input[inputi + 1], input[inputi + 2]);
|
||||
|
||||
fposition += step_size;
|
||||
}
|
||||
|
||||
while (fposition < 2 * scale_factor) {
|
||||
u64 fraction = fposition & scale_mask;
|
||||
state.xn2 = input[inputi];
|
||||
state.xn1 = input[inputi + 1];
|
||||
state.fposition = fposition - inputi * scale_factor;
|
||||
|
||||
output.push_back(fn(fraction, state.xn1, input[0], input[1]));
|
||||
|
||||
fposition += step_size;
|
||||
}
|
||||
|
||||
while (fposition < max_fposition) {
|
||||
u64 fraction = fposition & scale_mask;
|
||||
|
||||
size_t index = static_cast<size_t>(fposition / scale_factor);
|
||||
output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index]));
|
||||
|
||||
fposition += step_size;
|
||||
}
|
||||
|
||||
state.xn2 = input[input.size() - 2];
|
||||
state.xn1 = input[input.size() - 1];
|
||||
|
||||
return output;
|
||||
input.erase(input.begin(), input.begin() + inputi + 2);
|
||||
}
|
||||
|
||||
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
||||
return StepOverSamples(
|
||||
state, input, rate_multiplier,
|
||||
void None(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
|
||||
size_t& outputi) {
|
||||
StepOverSamples(
|
||||
state, input, rate, output, outputi,
|
||||
[](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { return x0; });
|
||||
}
|
||||
|
||||
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
||||
void Linear(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
|
||||
size_t& outputi) {
|
||||
// Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
|
||||
return StepOverSamples(state, input, rate_multiplier,
|
||||
[](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
|
||||
// This is a saturated subtraction. (Verified by black-box fuzzing.)
|
||||
s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767);
|
||||
s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767);
|
||||
StepOverSamples(state, input, rate, output, outputi,
|
||||
[](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
|
||||
// This is a saturated subtraction. (Verified by black-box fuzzing.)
|
||||
s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767);
|
||||
s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767);
|
||||
|
||||
return std::array<s16, 2>{
|
||||
static_cast<s16>(x0[0] + fraction * delta0 / scale_factor),
|
||||
static_cast<s16>(x0[1] + fraction * delta1 / scale_factor),
|
||||
};
|
||||
});
|
||||
return std::array<s16, 2>{
|
||||
static_cast<s16>(x0[0] + fraction * delta0 / scale_factor),
|
||||
static_cast<s16>(x0[1] + fraction * delta1 / scale_factor),
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace AudioInterp
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include "audio_core/hle/common.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace AudioInterp {
|
||||
|
@ -14,31 +15,35 @@ namespace AudioInterp {
|
|||
using StereoBuffer16 = std::vector<std::array<s16, 2>>;
|
||||
|
||||
struct State {
|
||||
// Two historical samples.
|
||||
/// Two historical samples.
|
||||
std::array<s16, 2> xn1 = {}; ///< x[n-1]
|
||||
std::array<s16, 2> xn2 = {}; ///< x[n-2]
|
||||
/// Current fractional position.
|
||||
u64 fposition = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay.
|
||||
* @param state Interpolation state.
|
||||
* @param input Input buffer.
|
||||
* @param rate_multiplier Stretch factor. Must be a positive non-zero value.
|
||||
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0
|
||||
* performs upsampling.
|
||||
* @return The resampled audio buffer.
|
||||
* @param rate Stretch factor. Must be a positive non-zero value.
|
||||
* rate > 1.0 performs decimation and rate < 1.0 performs upsampling.
|
||||
* @param output The resampled audio buffer.
|
||||
* @param outputi The index of output to start writing to.
|
||||
*/
|
||||
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier);
|
||||
void None(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
|
||||
size_t& outputi);
|
||||
|
||||
/**
|
||||
* Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay.
|
||||
* @param state Interpolation state.
|
||||
* @param input Input buffer.
|
||||
* @param rate_multiplier Stretch factor. Must be a positive non-zero value.
|
||||
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0
|
||||
* performs upsampling.
|
||||
* @return The resampled audio buffer.
|
||||
* @param rate Stretch factor. Must be a positive non-zero value.
|
||||
* rate > 1.0 performs decimation and rate < 1.0 performs upsampling.
|
||||
* @param output The resampled audio buffer.
|
||||
* @param outputi The index of output to start writing to.
|
||||
*/
|
||||
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier);
|
||||
void Linear(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
|
||||
size_t& outputi);
|
||||
|
||||
} // namespace AudioInterp
|
||||
|
|
Loading…
Reference in a new issue