#include #include #include #include #include #include #include #include #include #include "SDL.h" #include "blockingconcurrentqueue.h" #include "ultra64.h" #include "multilibultra.hpp" #include "recomp.h" struct SpTaskAction { OSTask task; }; struct SwapBuffersAction { uint32_t origin; }; using Action = std::variant; static struct { struct { std::thread thread; PTR(OSMesgQueue) mq = NULLPTR; OSMesg msg = (OSMesg)0; int retrace_count = 1; } vi; struct { std::thread thread; PTR(OSMesgQueue) mq = NULLPTR; OSMesg msg = (OSMesg)0; } sp; struct { std::thread thread; PTR(OSMesgQueue) mq = NULLPTR; OSMesg msg = (OSMesg)0; } dp; struct { std::thread thread; PTR(OSMesgQueue) mq = NULLPTR; OSMesg msg = (OSMesg)0; } ai; struct { std::thread thread; PTR(OSMesgQueue) mq = NULLPTR; OSMesg msg = (OSMesg)0; } si; // The same message queue may be used for multiple events, so share a mutex for all of them std::mutex message_mutex; uint8_t* rdram; std::chrono::system_clock::time_point start; moodycamel::BlockingConcurrentQueue action_queue{}; } events_context{}; extern "C" void osSetEventMesg(RDRAM_ARG OSEvent event_id, PTR(OSMesgQueue) mq_, OSMesg msg) { OSMesgQueue* mq = TO_PTR(OSMesgQueue, mq_); std::lock_guard lock{ events_context.message_mutex }; switch (event_id) { case OS_EVENT_SP: events_context.sp.msg = msg; events_context.sp.mq = mq_; break; case OS_EVENT_DP: events_context.dp.msg = msg; events_context.dp.mq = mq_; break; case OS_EVENT_AI: events_context.ai.msg = msg; events_context.ai.mq = mq_; break; case OS_EVENT_SI: events_context.si.msg = msg; events_context.si.mq = mq_; } } extern "C" void osViSetEvent(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, u32 retrace_count) { std::lock_guard lock{ events_context.message_mutex }; events_context.vi.mq = mq_; events_context.vi.msg = msg; events_context.vi.retrace_count = retrace_count; } constexpr uint32_t speed_multiplier = 1; // N64 CPU counter ticks per millisecond constexpr uint32_t counter_per_ms = 46'875 * speed_multiplier; uint64_t duration_to_count(std::chrono::system_clock::duration duration) { uint64_t delta_micros = std::chrono::duration_cast(duration).count(); // More accurate than using a floating point timer, will only overflow after running for 12.47 years // Units: (micros * (counts/millis)) / (micros/millis) = counts uint64_t total_count = (delta_micros * counter_per_ms) / 1000; return total_count; } extern "C" u32 osGetCount() { uint64_t total_count = duration_to_count(std::chrono::system_clock::now() - events_context.start); // Allow for overflows, which is how osGetCount behaves return (uint32_t)total_count; } extern "C" OSTime osGetTime() { uint64_t total_count = duration_to_count(std::chrono::system_clock::now() - events_context.start); return total_count; } void vi_thread_func() { using namespace std::chrono_literals; events_context.start = std::chrono::system_clock::now(); uint64_t total_vis = 0; int remaining_retraces = events_context.vi.retrace_count; while (true) { // Determine the next VI time (more accurate than adding 16ms each VI interrupt) auto next = events_context.start + (total_vis * 1000000us) / (60 * speed_multiplier); //if (next > std::chrono::system_clock::now()) { // printf("Sleeping for %" PRIu64 " us to get from %" PRIu64 " us to %" PRIu64 " us \n", // (next - std::chrono::system_clock::now()) / 1us, // (std::chrono::system_clock::now() - events_context.start) / 1us, // (next - events_context.start) / 1us); //} else { // printf("No need to sleep\n"); //} std::this_thread::sleep_until(next); // Calculate how many VIs have passed uint64_t new_total_vis = ((std::chrono::system_clock::now() - events_context.start) * (60 * speed_multiplier) / 1000ms) + 1; if (new_total_vis > total_vis + 1) { //printf("Skipped % " PRId64 " frames in VI interupt thread!\n", new_total_vis - total_vis - 1); } total_vis = new_total_vis; remaining_retraces--; { std::lock_guard lock{ events_context.message_mutex }; uint8_t* rdram = events_context.rdram; if (remaining_retraces == 0) { remaining_retraces = events_context.vi.retrace_count; if (events_context.vi.mq != NULLPTR) { if (osSendMesg(PASS_RDRAM events_context.vi.mq, events_context.vi.msg, OS_MESG_NOBLOCK) == -1) { //printf("Game skipped a VI frame!\n"); } } } if (events_context.ai.mq != NULLPTR) { if (osSendMesg(PASS_RDRAM events_context.ai.mq, events_context.ai.msg, OS_MESG_NOBLOCK) == -1) { //printf("Game skipped a AI frame!\n"); } } } } } void sp_complete() { uint8_t* rdram = events_context.rdram; std::lock_guard lock{ events_context.message_mutex }; osSendMesg(PASS_RDRAM events_context.sp.mq, events_context.sp.msg, OS_MESG_NOBLOCK); } void dp_complete() { uint8_t* rdram = events_context.rdram; std::lock_guard lock{ events_context.message_mutex }; osSendMesg(PASS_RDRAM events_context.dp.mq, events_context.dp.msg, OS_MESG_NOBLOCK); } void RT64Init(uint8_t* rom, uint8_t* rdram); void RT64SendDL(uint8_t* rdram, const OSTask* task); void RT64UpdateScreen(uint32_t vi_origin); std::unordered_map button_map{ { SDL_Scancode::SDL_SCANCODE_LEFT, 0x0002 }, // c left { SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 }, // c right { SDL_Scancode::SDL_SCANCODE_UP, 0x0008 }, // c up { SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }, // c down { SDL_Scancode::SDL_SCANCODE_RETURN, 0x1000 }, // start { SDL_Scancode::SDL_SCANCODE_SPACE, 0x8000 }, // a { SDL_Scancode::SDL_SCANCODE_LSHIFT, 0x4000 }, // b { SDL_Scancode::SDL_SCANCODE_Q, 0x2000 }, // z }; extern int button; extern int stick_x; extern int stick_y; int sdl_event_filter(void* userdata, SDL_Event* event) { switch (event->type) { case SDL_EventType::SDL_KEYUP: case SDL_EventType::SDL_KEYDOWN: { const Uint8* key_states = SDL_GetKeyboardState(nullptr); int new_button = 0; for (const auto& mapping : button_map) { if (key_states[mapping.first]) { new_button |= mapping.second; } } button = new_button; stick_x = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]); stick_y = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]); } break; case SDL_EventType::SDL_QUIT: std::quick_exit(ERROR_SUCCESS); break; } return 1; } void gfx_thread_func(uint8_t* rdram, uint8_t* rom) { using namespace std::chrono_literals; if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK) < 0) { fprintf(stderr, "Failed to initialize SDL2: %s\n", SDL_GetError()); std::quick_exit(EXIT_FAILURE); } RT64Init(rom, rdram); SDL_Window* window = SDL_GetWindowFromID(1); // TODO set this window title in RT64, create the window here and send it to RT64, or something else entirely // as the current window name visibly changes as RT64 is initialized SDL_SetWindowTitle(window, "Recomp"); SDL_SetEventFilter(sdl_event_filter, nullptr); while (true) { // Try to pull an action from the queue Action action; if (events_context.action_queue.wait_dequeue_timed(action, 1ms)) { // Determine the action type and act on it if (const auto* task_action = std::get_if(&action)) { if (task_action->task.t.type == M_GFXTASK) { // (TODO let RT64 do this) Tell the game that the RSP and RDP tasks are complete RT64SendDL(rdram, &task_action->task); sp_complete(); dp_complete(); } else if (task_action->task.t.type == M_AUDTASK) { sp_complete(); } else { fprintf(stderr, "Unknown task type: %" PRIu32 "\n", task_action->task.t.type); std::exit(EXIT_FAILURE); } } else if (const auto* swap_action = std::get_if(&action)) { RT64UpdateScreen(swap_action->origin); } } // Handle events SDL_PumpEvents(); } } extern "C" void osViSwapBuffer(RDRAM_ARG PTR(void) frameBufPtr) { events_context.action_queue.enqueue(SwapBuffersAction{ osVirtualToPhysical(frameBufPtr) + 640 }); } void Multilibultra::submit_rsp_task(RDRAM_ARG PTR(OSTask) task_) { OSTask* task = TO_PTR(OSTask, task_); events_context.action_queue.enqueue(SpTaskAction{ *task }); } void Multilibultra::send_si_message() { uint8_t* rdram = events_context.rdram; osSendMesg(PASS_RDRAM events_context.si.mq, events_context.si.msg, OS_MESG_NOBLOCK); } void Multilibultra::init_events(uint8_t* rdram, uint8_t* rom) { events_context.rdram = rdram; events_context.vi.thread = std::thread{ vi_thread_func }; events_context.sp.thread = std::thread{ gfx_thread_func, rdram, rom }; }