N64Recomp/test/portultra/events.cpp

325 lines
11 KiB
C++
Raw Normal View History

#include <thread>
#include <atomic>
#include <chrono>
#include <cinttypes>
#include <variant>
#include <unordered_map>
#include <utility>
#include <mutex>
#include <queue>
#include <Windows.h>
#include "SDL.h"
#include "blockingconcurrentqueue.h"
#include "ultra64.h"
#include "multilibultra.hpp"
#include "recomp.h"
#include "../src/rsp.h"
struct SpTaskAction {
OSTask task;
};
struct SwapBuffersAction {
uint32_t origin;
};
using Action = std::variant<SpTaskAction, SwapBuffersAction>;
static struct {
struct {
std::thread thread;
PTR(OSMesgQueue) mq = NULLPTR;
PTR(void) current_buffer = NULLPTR;
PTR(void) next_buffer = NULLPTR;
OSMesg msg = (OSMesg)0;
int retrace_count = 1;
} vi;
struct {
std::thread thread;
PTR(OSMesgQueue) mq = NULLPTR;
OSMesg msg = (OSMesg)0;
} sp;
struct {
std::thread thread;
PTR(OSMesgQueue) mq = NULLPTR;
OSMesg msg = (OSMesg)0;
} dp;
struct {
std::thread thread;
PTR(OSMesgQueue) mq = NULLPTR;
OSMesg msg = (OSMesg)0;
} ai;
struct {
std::thread thread;
PTR(OSMesgQueue) mq = NULLPTR;
OSMesg msg = (OSMesg)0;
} si;
// The same message queue may be used for multiple events, so share a mutex for all of them
std::mutex message_mutex;
uint8_t* rdram;
moodycamel::BlockingConcurrentQueue<Action> action_queue{};
} events_context{};
extern "C" void osSetEventMesg(RDRAM_ARG OSEvent event_id, PTR(OSMesgQueue) mq_, OSMesg msg) {
OSMesgQueue* mq = TO_PTR(OSMesgQueue, mq_);
std::lock_guard lock{ events_context.message_mutex };
switch (event_id) {
case OS_EVENT_SP:
events_context.sp.msg = msg;
events_context.sp.mq = mq_;
break;
case OS_EVENT_DP:
events_context.dp.msg = msg;
events_context.dp.mq = mq_;
break;
case OS_EVENT_AI:
events_context.ai.msg = msg;
events_context.ai.mq = mq_;
break;
case OS_EVENT_SI:
events_context.si.msg = msg;
events_context.si.mq = mq_;
}
}
extern "C" void osViSetEvent(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, u32 retrace_count) {
std::lock_guard lock{ events_context.message_mutex };
events_context.vi.mq = mq_;
events_context.vi.msg = msg;
events_context.vi.retrace_count = retrace_count;
}
void vi_thread_func() {
using namespace std::chrono_literals;
uint64_t total_vis = 0;
int remaining_retraces = events_context.vi.retrace_count;
while (true) {
// Determine the next VI time (more accurate than adding 16ms each VI interrupt)
auto next = Multilibultra::get_start() + (total_vis * 1000000us) / (60 * Multilibultra::get_speed_multiplier());
//if (next > std::chrono::system_clock::now()) {
// printf("Sleeping for %" PRIu64 " us to get from %" PRIu64 " us to %" PRIu64 " us \n",
// (next - std::chrono::system_clock::now()) / 1us,
// (std::chrono::system_clock::now() - events_context.start) / 1us,
// (next - events_context.start) / 1us);
//} else {
// printf("No need to sleep\n");
//}
std::this_thread::sleep_until(next);
// Calculate how many VIs have passed
uint64_t new_total_vis = (Multilibultra::time_since_start() * (60 * Multilibultra::get_speed_multiplier()) / 1000ms) + 1;
if (new_total_vis > total_vis + 1) {
//printf("Skipped % " PRId64 " frames in VI interupt thread!\n", new_total_vis - total_vis - 1);
}
total_vis = new_total_vis;
remaining_retraces--;
{
std::lock_guard lock{ events_context.message_mutex };
uint8_t* rdram = events_context.rdram;
if (remaining_retraces == 0) {
remaining_retraces = events_context.vi.retrace_count;
if (events_context.vi.mq != NULLPTR) {
if (osSendMesg(PASS_RDRAM events_context.vi.mq, events_context.vi.msg, OS_MESG_NOBLOCK) == -1) {
//printf("Game skipped a VI frame!\n");
}
}
}
if (events_context.ai.mq != NULLPTR) {
if (osSendMesg(PASS_RDRAM events_context.ai.mq, events_context.ai.msg, OS_MESG_NOBLOCK) == -1) {
//printf("Game skipped a AI frame!\n");
}
}
}
}
}
void sp_complete() {
uint8_t* rdram = events_context.rdram;
std::lock_guard lock{ events_context.message_mutex };
osSendMesg(PASS_RDRAM events_context.sp.mq, events_context.sp.msg, OS_MESG_NOBLOCK);
}
void dp_complete() {
uint8_t* rdram = events_context.rdram;
std::lock_guard lock{ events_context.message_mutex };
osSendMesg(PASS_RDRAM events_context.dp.mq, events_context.dp.msg, OS_MESG_NOBLOCK);
}
void RT64Init(uint8_t* rom, uint8_t* rdram);
void RT64SendDL(uint8_t* rdram, const OSTask* task);
void RT64UpdateScreen(uint32_t vi_origin);
std::unordered_map<SDL_Scancode, int> button_map{
{ SDL_Scancode::SDL_SCANCODE_LEFT, 0x0002 }, // c left
{ SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 }, // c right
{ SDL_Scancode::SDL_SCANCODE_UP, 0x0008 }, // c up
{ SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }, // c down
{ SDL_Scancode::SDL_SCANCODE_RETURN, 0x1000 }, // start
{ SDL_Scancode::SDL_SCANCODE_SPACE, 0x8000 }, // a
{ SDL_Scancode::SDL_SCANCODE_LSHIFT, 0x4000 }, // b
{ SDL_Scancode::SDL_SCANCODE_Q, 0x2000 }, // z
{ SDL_Scancode::SDL_SCANCODE_E, 0x0020 }, // l
{ SDL_Scancode::SDL_SCANCODE_R, 0x0010 }, // r
{ SDL_Scancode::SDL_SCANCODE_J, 0x0200 }, // dpad left
{ SDL_Scancode::SDL_SCANCODE_L, 0x0100 }, // dpad right
{ SDL_Scancode::SDL_SCANCODE_I, 0x0800 }, // dpad up
{ SDL_Scancode::SDL_SCANCODE_K, 0x0400 }, // dpad down
};
extern int button;
extern int stick_x;
extern int stick_y;
int sdl_event_filter(void* userdata, SDL_Event* event) {
switch (event->type) {
case SDL_EventType::SDL_KEYUP:
case SDL_EventType::SDL_KEYDOWN:
{
const Uint8* key_states = SDL_GetKeyboardState(nullptr);
int new_button = 0;
for (const auto& mapping : button_map) {
if (key_states[mapping.first]) {
new_button |= mapping.second;
}
}
button = new_button;
stick_x = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]);
stick_y = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]);
}
break;
case SDL_EventType::SDL_QUIT:
std::quick_exit(ERROR_SUCCESS);
break;
}
return 1;
}
uint8_t dmem[0x1000];
uint16_t rspReciprocals[512];
uint16_t rspInverseSquareRoots[512];
using RspUcodeFunc = RspExitReason(uint8_t* rdram);
extern RspUcodeFunc njpgdspMain;
// From Ares emulator. For license details, see rsp_vu.h
void rsp_constants_init() {
rspReciprocals[0] = u16(~0);
for (u16 index = 1; index < 512; index++) {
u64 a = index + 512;
u64 b = (u64(1) << 34) / a;
rspReciprocals[index] = u16(b + 1 >> 8);
}
for (u16 index = 0; index < 512; index++) {
u64 a = index + 512 >> ((index % 2 == 1) ? 1 : 0);
u64 b = 1 << 17;
//find the largest b where b < 1.0 / sqrt(a)
while (a * (b + 1) * (b + 1) < (u64(1) << 44)) b++;
rspInverseSquareRoots[index] = u16(b >> 1);
}
}
// Runs a recompiled RSP microcode
void run_rsp_microcode(uint8_t* rdram, const OSTask* task, RspUcodeFunc* ucode_func) {
// Load the OSTask into DMEM
memcpy(&dmem[0xFC0], task, sizeof(OSTask));
// Load the ucode data into DMEM
dma_rdram_to_dmem(rdram, 0x0000, task->t.ucode_data, 0xF80 - 1);
// Run the ucode
RspExitReason exit_reason = ucode_func(rdram);
// Ensure that the ucode exited correctly
assert(exit_reason == RspExitReason::Broke);
sp_complete();
}
void event_thread_func(uint8_t* rdram, uint8_t* rom) {
using namespace std::chrono_literals;
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK) < 0) {
fprintf(stderr, "Failed to initialize SDL2: %s\n", SDL_GetError());
std::quick_exit(EXIT_FAILURE);
}
RT64Init(rom, rdram);
SDL_Window* window = SDL_GetWindowFromID(1);
// TODO set this window title in RT64, create the window here and send it to RT64, or something else entirely
// as the current window name visibly changes as RT64 is initialized
SDL_SetWindowTitle(window, "Recomp");
//SDL_SetEventFilter(sdl_event_filter, nullptr);
rsp_constants_init();
while (true) {
// Try to pull an action from the queue
Action action;
if (events_context.action_queue.wait_dequeue_timed(action, 1ms)) {
// Determine the action type and act on it
if (const auto* task_action = std::get_if<SpTaskAction>(&action)) {
if (task_action->task.t.type == M_GFXTASK) {
// (TODO let RT64 do this) Tell the game that the RSP and RDP tasks are complete
RT64SendDL(rdram, &task_action->task);
sp_complete();
dp_complete();
} else if (task_action->task.t.type == M_AUDTASK) {
sp_complete();
} else if (task_action->task.t.type == M_NJPEGTASK) {
run_rsp_microcode(rdram, &task_action->task, njpgdspMain);
} else {
fprintf(stderr, "Unknown task type: %" PRIu32 "\n", task_action->task.t.type);
assert(false);
std::quick_exit(EXIT_FAILURE);
}
} else if (const auto* swap_action = std::get_if<SwapBuffersAction>(&action)) {
events_context.vi.current_buffer = events_context.vi.next_buffer;
RT64UpdateScreen(swap_action->origin);
}
}
// Handle events
constexpr int max_events_per_frame = 16;
SDL_Event cur_event;
int i = 0;
while (i++ < max_events_per_frame && SDL_PollEvent(&cur_event)) {
sdl_event_filter(nullptr, &cur_event);
}
//SDL_PumpEvents();
}
}
extern "C" void osViSwapBuffer(RDRAM_ARG PTR(void) frameBufPtr) {
events_context.vi.next_buffer = frameBufPtr;
events_context.action_queue.enqueue(SwapBuffersAction{ osVirtualToPhysical(frameBufPtr) + 640 });
}
extern "C" PTR(void) osViGetNextFramebuffer() {
return events_context.vi.next_buffer;
}
extern "C" PTR(void) osViGetCurrentFramebuffer() {
return events_context.vi.current_buffer;
}
void Multilibultra::submit_rsp_task(RDRAM_ARG PTR(OSTask) task_) {
OSTask* task = TO_PTR(OSTask, task_);
events_context.action_queue.enqueue(SpTaskAction{ *task });
}
void Multilibultra::send_si_message() {
uint8_t* rdram = events_context.rdram;
osSendMesg(PASS_RDRAM events_context.si.mq, events_context.si.msg, OS_MESG_NOBLOCK);
}
void Multilibultra::init_events(uint8_t* rdram, uint8_t* rom) {
events_context.rdram = rdram;
events_context.vi.thread = std::thread{ vi_thread_func };
events_context.sp.thread = std::thread{ event_thread_func, rdram, rom };
}